题目内容

两个命题p:对任意x∈R,都有sinx+cosx≤
3
2
;q:若a,b,c为实数,则b2=ac是a,b,c成等比数列的充要条件,则(  )
A.p且q为真B.p或q为假
C.“非p”且q为真D.p且“非q”为真
因为sinx+cosx=
2
sin(x+
π
4
)≤
2
,所以sinx+cosx≤
3
2
成立,即命题p为真.
若a=b=c=0,满足b2=ac,此时a,b,c不能成等比数列,所以命题q为假命题.
所以p且q为假命题,p或q为真命题,非p且q为假命题,p且非q为真,所以D正确.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网