题目内容
(本小题满分12分)
如图,在三棱锥
中,
,
,
,
,
, 点
,
分别在棱
上,且
,

(I)求证:
平面
;
(II)当
为
的中点时,求
与平面
所成的角的大小;
(III)是否存在点
使得二面角
为直二面角?并说明理由.
如图,在三棱锥
(I)求证:
(II)当
(III)是否存在点
(I)证明略
(II)
(III)存在,理由略
解:(法1)(Ⅰ)∵
,
,
,∴PA⊥底面ABC,∴PA⊥BC.又
,∴AC⊥BC.∴BC⊥平面PAC.(4分)
(Ⅱ)∵D为PB的中点,DE//BC,∴
,
又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,∵PA⊥底面ABC,
∴PA⊥AB,又PA=AB,∴△ABP为等腰直角三角形,
∴
,∴在Rt△ABC中,
,∴
.
∴在Rt△ADE中,
,
∴
与平面
所成的角的大小
.(8分)
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
平面PAC,PE
平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角
的平面角,∵PA⊥底面ABC,
∴PA⊥AC,∴
.∴在棱PC上存在一点E,使得AE⊥PC,
这时
,故存在点E使得二面角
是直二面角.(12分)
(法2)如图,以A为原煤点建立空间直角坐标系
,设
,
由已知可得
,
,
,
.
(Ⅰ)∵
,
,∴
,
∴BC⊥AP.又∵
,∴BC⊥AC,∴BC⊥平面PAC.(4分)
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,
∴
,
,∴又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.∴∠DAE是AD与平面PAC所成的角,
∵
,
∴
,
∴
与平面
所成的角的大小
。(8分)
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
平面PAC,PE
平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角
的平面角,∵PA⊥底面ABC,
∴PA⊥AC,∴
.∴在棱PC上存在一点E,
使得AE⊥PC,这时
,
故存在点E使得二面角
是直二面角.(12分)
(Ⅱ)∵D为PB的中点,DE//BC,∴
又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,∵PA⊥底面ABC,
∴PA⊥AB,又PA=AB,∴△ABP为等腰直角三角形,
∴
∴在Rt△ADE中,
∴
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
∴∠AEP为二面角
∴PA⊥AC,∴
这时
(法2)如图,以A为原煤点建立空间直角坐标系
由已知可得
(Ⅰ)∵
∴BC⊥AP.又∵
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,
∴
∴DE⊥平面PAC,垂足为点E.∴∠DAE是AD与平面PAC所成的角,
∵
∴
∴
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
∴∠AEP为二面角
∴PA⊥AC,∴
使得AE⊥PC,这时
故存在点E使得二面角
练习册系列答案
相关题目