题目内容

已知P是△ABC所在平面内的一点,若
CB
-
PB
PA
,其中λ∈R,则点P一定在(  )
A、AC边所在的直线上
B、BC边所在的直线上
C、AB边所在的直线上
D、△ABC的内部
分析:找出向量
CP
与向量
PA
的关系,即可确定答案.
解答:解:∵
CB
-
PB
PA

又,
PB
=
PC
+
CB

CB
-(
PC
+
CB
)
=λ
PA

即,-
PC
PA
CP
PA

CP
PA

∴P点在AC边所在直线上.
故选A
点评:本题主要考查向量的共线定理.要证明三点共线时一般转化为证明向量的共线问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网