题目内容
(理)若x+y=
,则sinx•siny的最小值为______.
| π |
| 3 |
sinx•siny=
[cos(x-y)-cos(x+y)]=
[cos(x-y)-
]=
cos(x-y)-
.
易知-1≤cos(x-y)≤1,所以-
≤
cos(x-y)≤
.
-
≤
cos(x-y)-
≤
.所以-
≤sinxsiny≤
.
易知当x=120°,y=-60°时,sinxsiny=-
,达到最小值.
故(sinxsiny)min=-
.
故答案为-
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
易知-1≤cos(x-y)≤1,所以-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
-
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
易知当x=120°,y=-60°时,sinxsiny=-
| 3 |
| 4 |
故(sinxsiny)min=-
| 3 |
| 4 |
故答案为-
| 3 |
| 4 |
练习册系列答案
相关题目