题目内容
(2013•佛山一模)已知集合M={x||x-4|+|x-1|<5},N={x|a<x<6},且M∩N={2,b},则a+b=( )
分析:集合M中的不等式表示数轴上到1的距离与到4的距离之和小于5,求出x的范围,确定出M,由M与N的交集及N,确定出a与b的值,即可求出a+b的值.
解答:解:由集合M中的不等式,解得:0<x<5,
∴M={x|0<x<5},
∵N={x|a<x<6},且M∩N=(2,b),
∴a=2,b=5,
则a+b=2+5=7.
故选B
∴M={x|0<x<5},
∵N={x|a<x<6},且M∩N=(2,b),
∴a=2,b=5,
则a+b=2+5=7.
故选B
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目