题目内容
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点
为圆心的两个同心圆弧
、弧
以及两条线段
和
围成的封闭图形.花坛设计周长为30米,其中大圆弧
所在圆的半径为10米.设小圆弧
所在圆的半径为
米(
),圆心角为
弧度.

(1)求
关于
的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,当
为何值时,
取得最大值?
(1)求
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
(1)
;(2)参考解析
试题分析:(1)由于花坛设计周长为30米,其中大圆弧
(2)由花坛两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.即可得所需费用的关系式. 花坛的面积由大扇形面积减去小的扇形面积即可,再利用基本不等式即可求得结论.
试题解析:(1)设扇环的圆心角为q,则
所以
(2)花坛的面积为
装饰总费用为
所以花坛的面积与装饰总费用的比
令
此时
答:当
练习册系列答案
相关题目