题目内容

5.已知正项等差数列{an}的前n项和为Sn,若S3=12,且a1,a2,a3+2成等比数列.
(Ⅰ) 求{an}的通项公式;
(Ⅱ) 若bn=3nan,数列{bn}的前n项和为Tn,求Tn

分析 (Ⅰ)设正项等差数列{an}的公差为d,故d>0.由a1,a2,a3+2成等比数列,可得$({a}_{1}+d)^{2}$=a1(a1+2d+2).又S3=12=$3{a}_{1}+\frac{3×2}{2}d$,联立解出即可.
(Ⅱ)bn=2n•3n,利用“错位相减法”、等比数列的前n项和公式即可得出.

解答 解:(Ⅰ)设正项等差数列{an}的公差为d,故d>0.
∵a1,a2,a3+2成等比数列,
则${a}_{2}^{2}$=a1(a3+2),
即$({a}_{1}+d)^{2}$=a1(a1+2d+2).
又S3=12=$3{a}_{1}+\frac{3×2}{2}d$,
解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=2}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=8}\\{d=-4}\end{array}\right.$(舍去),
∴an=2+(n-1)×2=2n.
(Ⅱ)bn=2n•3n
∴Tn=2×3+2×2×32+…+2n•3n
∴3Tn=2×32+4×33+…+(2n-2)•3n+2n•3n+1
∴-2Tn=2×3+2(32+33+…+3n)-2n×3n+1
=$2×\frac{3×({3}^{n}-1)}{3-1}$-2n×3n+1=(1-2n)×3n+1-3,
∴${T}_{n}=\frac{(2n-1)×{3}^{n+1}}{2}$+$\frac{3}{2}$.

点评 本题主要考查了等比数列与等差数列的通项公式及其前n项和公式、“错位相减法”等基础知识;考查推理论证与运算求解能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网