题目内容

已知点F是抛物线y2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=(  )
A、2B、3C、4D、5
分析:确定抛物线y2=4x的准线方程,利用P到焦点F的距离等于P到准线的距离,即可求得结论.
解答:解:抛物线y2=4x的准线方程为:x=-1,
∵P到焦点F的距离等于P到准线的距离,P的横坐标是2,
∴|PF|=2+1=3.
故选:B.
点评:本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网