题目内容
已知数列{xn}满足x1=x2=1并且
=λ
,(λ为非零参数,n=2,3,4,…).
(1)若x1、x3、x5成等比数列,求参数λ的值;
(2)设0<λ<1,常数k∈N*且k≥3,证明
+
+…+
<
(n∈N*).
| xn+1 |
| xn |
| xn |
| xn-1 |
(1)若x1、x3、x5成等比数列,求参数λ的值;
(2)设0<λ<1,常数k∈N*且k≥3,证明
| x1+k |
| x1 |
| x2+k |
| x2 |
| xn+k |
| xn |
| λk |
| 1-λk |
(1)由已知x1=x2=1,且
=λ
?x3=λ,
=λ
?x4=λ3,
=λ
?x5=λ6.
若x1、x3、x5成等比数列,
则x32=x1x5,即λ2=λ6.而λ≠0,
解得λ=±1.
(2)证明:设an=
,由已知,数列{an}是以
=1为首项、λ为公比的等比数列,
故
=λn-1,
则
=
.
=λn+k-2.λn+k-3λn-1
λkn+
.
因此,对任意n∈N*,
+
++
=λk+
+λ2k+
++λkn+
=λ
(λk+λ2k++λnk)
=λ
.
当k≥3且0<λ<1时,0<λ
≤1,0<1-λnk<1,
所以
+
++
<
(n∈N*).
| x3 |
| x2 |
| x2 |
| x1 |
| x4 |
| x3 |
| x3 |
| x2 |
| x5 |
| x4 |
| x4 |
| x3 |
若x1、x3、x5成等比数列,
则x32=x1x5,即λ2=λ6.而λ≠0,
解得λ=±1.
(2)证明:设an=
| xn+1 |
| xn |
| x2 |
| x1 |
故
| xn+1 |
| xn |
则
| xn+k |
| xn |
| xn+k |
| xn+k-1 |
| xn+k-1 |
| xn+k-2 |
| xn+1 |
| xn |
λkn+
| k(k-3) |
| 2 |
因此,对任意n∈N*,
| x1+k |
| x1 |
| x2+k |
| x2 |
| xn+k |
| xn |
| k(k-3) |
| 2 |
| k(k-3) |
| 2 |
| k(k-3) |
| 2 |
| k(k-3) |
| 2 |
=λ
| k(k-3) |
| 2 |
| λk(1-λnk) |
| 1-λk |
当k≥3且0<λ<1时,0<λ
| k(k-3) |
| 2 |
所以
| x1+k |
| x1 |
| x2+k |
| x2 |
| xn+k |
| xn |
| λk |
| 1-λk |
练习册系列答案
相关题目