题目内容
判断函数y=x+| 4 | x |
分析:设0<x1<x2,化简 y1-y2 的解析式到因式乘积的形式,假如0<x1<x2<2,
判断y1-y2的符号,得出结论; 假如2<x1<x2,判断y1-y2 的符号,得出结论.
判断y1-y2的符号,得出结论; 假如2<x1<x2,判断y1-y2 的符号,得出结论.
解答:解:设0<x1<x2,
则 y1-y2
=(x1+
)-(x2+
)
=(x1-x2)+(
-
)
=(x1-x2)+[
]
=(x1-x2)[1-(
)]
(1)假如0<x1<x2<2,则 0<x1x2<4,
>1,1-
<0,
x1-x2<0,
所以,y1-y2>0,y1>y2,函数单调递减
(2)假如2<x1<x2,则 x1x2>4,
<1,1-
>0,
又x1-x2<0,
所以,y1-y2<0,y1<y2,函数单调递增
所以函数在(0,2)内单调递减;在[2,+∞)内单调递增.
则 y1-y2
=(x1+
| 4 |
| x1 |
| 4 |
| x2 |
=(x1-x2)+(
| 4 |
| x1 |
| 4 |
| x2 |
=(x1-x2)+[
| 4(x2-x1) |
| x1x2 |
=(x1-x2)[1-(
| 4 |
| x1x2 |
(1)假如0<x1<x2<2,则 0<x1x2<4,
| 4 |
| x1x2 |
| 4 |
| x1x2 |
x1-x2<0,
所以,y1-y2>0,y1>y2,函数单调递减
(2)假如2<x1<x2,则 x1x2>4,
| 4 |
| x1x2 |
| 4 |
| x1x2 |
又x1-x2<0,
所以,y1-y2<0,y1<y2,函数单调递增
所以函数在(0,2)内单调递减;在[2,+∞)内单调递增.
点评:本题考查利用函数的单调性的定义证明函数的单调性,体现分类讨论的数学思想.
练习册系列答案
相关题目