题目内容
数列{an}满足an+1+an=4n-3(n∈N*)
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1.
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1.
( I)由题意得an+1+an=4n-3…①
an+2+an+1=4n+1…②.…(2分)
②-①得an+2-an=4,
∵{an}是等差数列,设公差为d,∴d=2,(4分)
∵a1+a2=1∴a1+a1+d=1,∴a1=-
.(6分)
∴an=2n-
.(7分)
(Ⅱ)∵a1=2,a1+a2=1,
∴a2=-1.(8分)
又∵an+2-an=4,
∴数列的奇数项与偶数项分别成等差数列,公差均为4,
∴a2n-1=4n-2,a2n=4n-5.(11分)
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n)(12分)
=(n+1)×2+
×4+n×(-1)+
×4
=4n2+n+2.(14分)
an+2+an+1=4n+1…②.…(2分)
②-①得an+2-an=4,
∵{an}是等差数列,设公差为d,∴d=2,(4分)
∵a1+a2=1∴a1+a1+d=1,∴a1=-
| 1 |
| 2 |
∴an=2n-
| 5 |
| 2 |
(Ⅱ)∵a1=2,a1+a2=1,
∴a2=-1.(8分)
又∵an+2-an=4,
∴数列的奇数项与偶数项分别成等差数列,公差均为4,
∴a2n-1=4n-2,a2n=4n-5.(11分)
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n)(12分)
=(n+1)×2+
| (n+1)n |
| 2 |
| n(n-1) |
| 2 |
=4n2+n+2.(14分)
练习册系列答案
相关题目