题目内容
设函数f(x)=
sin(x+
π)+2sin2
,x∈R.
(1)求f(x)的值域;
(2)记△ABC的内角A,B,C所对边长分别为a,b,c,若f(B)=
,b=
,c=3,求a的值.
| 3 |
| 2 |
| 3 |
| x |
| 2 |
(1)求f(x)的值域;
(2)记△ABC的内角A,B,C所对边长分别为a,b,c,若f(B)=
| 1 |
| 2 |
| 7 |
分析:(1)利用两角和差的余弦公式、半角公式化简函数f(x)的解析式为cos(x+
)+1,由此求得它的值域.
(2)△ABC中,若f(B)=
,b=
,c=3,则得 B=
.由余弦定理可求得a的值.
| π |
| 3 |
(2)△ABC中,若f(B)=
| 1 |
| 2 |
| 7 |
| π |
| 3 |
解答:解:(1)函数 f(x)=
sin(x+
π)+2sin2
=
sinxcos
+
cosxsin
+2×
=
cosx-
sinx=cos(x+
)+1,
由于 cos(x+
)∈[-1,1],∴cos(x+
)+1∈[0,2],
故函数的值域为[0,2].
(2)△ABC中,若f(B)=
,b=
,c=3,则得 cos(B+
)=-
,故 B=
.
由余弦定理可得 b2=a2+c2-2ac•cosB,化简可得a2-3a+2=0,解得a=1,或a=2.
| 3 |
| 2 |
| 3 |
| x |
| 2 |
| 3 |
| 2π |
| 3 |
| 3 |
| 2π |
| 3 |
| 1-cosx |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
由于 cos(x+
| π |
| 3 |
| π |
| 3 |
故函数的值域为[0,2].
(2)△ABC中,若f(B)=
| 1 |
| 2 |
| 7 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
由余弦定理可得 b2=a2+c2-2ac•cosB,化简可得a2-3a+2=0,解得a=1,或a=2.
点评:本题主要考查两角和差的余弦公式、半角公式的应用,余弦函数的定义域和值域,余弦定理的应用,属于中档题.
练习册系列答案
相关题目