题目内容

(08年北师大附中月考){an}是一个公差为dd≠0)的等差数列,它的前10项和S10 = 110且a1a2a4成等比数列.

(I)证明a1 = d

(II)求公差d的值和数列{an}的通项公式.

解析:(I)证明:因a1a2a4成等比数列,故= a1a4.

而{an}是等差数列,有a2 = a1 + da4 = a1 + 3d.

于是 (a1 + d)2 = a1(a1 + 3d),即 + 2a1d + d2 =+ 3a1d,化简,得:a1 = d.

(II)解:由条件 S10 = 110和S10 = 10a1 +d,得到 10a1 + 45d = 110.

由(I),a1 = d,代入上式,得 55d = 110,故d = 2,

an = a1 + (n-1)d = 2n.

因此,数列{an}的通项公式为an = 2nn = 1,2,3,….

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网