题目内容
(08年北师大附中月考){an}是一个公差为d(d≠0)的等差数列,它的前10项和S10 = 110且a1,a2,a4成等比数列.
(I)证明a1 = d;
(II)求公差d的值和数列{an}的通项公式.
解析:(I)证明:因a1,a2,a4成等比数列,故
= a1a4.
而{an}是等差数列,有a2 = a1 + d,a4 = a1 + 3d.
于是 (a1 + d)2 = a1(a1 + 3d),即
+ 2a1d + d2 =
+ 3a1d,化简,得:a1 = d.
(II)解:由条件 S10 = 110和S10 = 10a1 +
d,得到 10a1 + 45d = 110.
由(I),a1 = d,代入上式,得 55d = 110,故d = 2,
an = a1 + (n-1)d = 2n.
因此,数列{an}的通项公式为an = 2n(n = 1,2,3,….
练习册系列答案
相关题目