题目内容
(2012•保定一模)已知椭圆C:
+
=1(a>b>0)的离心率为
,且过点Q(1,
).
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P点在直线x+y-1=0上,且满足
+
=t
(O为坐标原点),求实数t的最小值.
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| ||
| 2 |
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P点在直线x+y-1=0上,且满足
| OA |
| OB |
| OP |
分析:(1)设椭圆的焦距为2c,由e=
,设椭圆方程为
+
=1,由Q(1,
)在椭圆
+
=1上,能求出椭圆方程.
(2)设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由
,得(1+2k2)x2-8k2x+8k2-2=0,由△=64k4-4(2k2+1)(8k2-2)≥0,知k∈[-
,
],由此入手能够求出实数t的最小值.
| ||
| 2 |
| x2 |
| 2c2 |
| y2 |
| c2 |
| ||
| 2 |
| x2 |
| 2c2 |
| y2 |
| c2 |
(2)设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由
|
| ||
| 2 |
| ||
| 2 |
解答:解:(1)设椭圆的焦距为2c,
∵e=
,∴a2=2c2,b2=c2,
设椭圆方程为
+
=1,
∵Q(1,
)在椭圆
+
=1上,
∴
+
=1,解得c2=1,
∴椭圆方程为
+y2=1.
(2)由题意知直线AB的斜率存在,
设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
由
,得(1+2k2)x2-8k2x+8k2-2=0,
△=64k4-4(2k2+1)(8k2-2)≥0,
k2≤
,
即k∈[-
,
],
x1+x2=
,x1x2=
,
∵
+
=t
,∴(x1+x2,y1+y2)=t(x,y),
当k=0时,t=0;
当t≠0时,
x=
=
,
y=
=
[k(x1+x2)-4k]=
,
∵点P在直线x+y-1=0上,
∴
-
-1=0,
∴t=
=4-
.
∵k∈[-
,
],
∴令h=
=
=
≤
.
当且仅当k=
-1时取等号.
故实数t的最小值为4-4h=2-
.
∵e=
| ||
| 2 |
设椭圆方程为
| x2 |
| 2c2 |
| y2 |
| c2 |
∵Q(1,
| ||
| 2 |
| x2 |
| 2c2 |
| y2 |
| c2 |
∴
| 1 |
| 2c2 |
| ||
| c2 |
∴椭圆方程为
| x2 |
| 2 |
(2)由题意知直线AB的斜率存在,
设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
由
|
△=64k4-4(2k2+1)(8k2-2)≥0,
k2≤
| 1 |
| 2 |
即k∈[-
| ||
| 2 |
| ||
| 2 |
x1+x2=
| 8k2 |
| 1+2k2 |
| 8k2-2 |
| 1+2k2 |
∵
| OA |
| OB |
| OP |
当k=0时,t=0;
当t≠0时,
x=
| x1+x2 |
| t |
| 8k2 |
| t(1+2k2) |
y=
| y1+y2 |
| t |
| 1 |
| t |
| -4k |
| t(1+2k2) |
∵点P在直线x+y-1=0上,
∴
| 8k2 |
| t(1+2k2) |
| 4k |
| t(1+2k2) |
∴t=
| 8k2-4k |
| 1+2k2 |
| 4(k+1) |
| 1+2k2 |
∵k∈[-
| ||
| 2 |
| ||
| 2 |
∴令h=
| k+1 |
| 1+2k2 |
| k+1 |
| 2(k+1)2-4(k+1)+3 |
| 1 | ||
2(k+1)+
|
| 1 | ||
2
|
当且仅当k=
| ||
| 2 |
故实数t的最小值为4-4h=2-
| 6 |
点评:本题考查椭圆与直线的位置关系的综合应用,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目