题目内容
正数m,n满足2m+n=1,则
+
的最小值为
| 1 |
| m |
| 2 |
| n |
8
8
.分析:由正数m,n满足2m+n=1,知
+
=(
+
)(2m+n)=4+
+
≥4+2
,由此能求出
+
的最小值.
| 1 |
| m |
| 2 |
| n |
| 1 |
| m |
| 2 |
| n |
| 4m |
| n |
| n |
| m |
|
| 1 |
| m |
| 2 |
| n |
解答:解:∵正数m,n满足2m+n=1,
∴
+
=(
+
)(2m+n)
=2+
+
+2
≥4+2
=8.
当且仅当
=
,即m=
,n=
时,
+
取最小值8.
故答案为:8.
∴
| 1 |
| m |
| 2 |
| n |
| 1 |
| m |
| 2 |
| n |
=2+
| 4m |
| n |
| n |
| m |
≥4+2
|
=8.
当且仅当
| 4m |
| n |
| n |
| m |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| m |
| 2 |
| n |
故答案为:8.
点评:本题考查基本不等式的性质和应用,是基础题.解题时要认真审题,注意均值不等式的合理运用.
练习册系列答案
相关题目