题目内容
g(x)=ax-
-2f(x),其中f(x)=lnx,且g(e)=be-
-2(e为自然对数的底数).
(1)求a与b的关系;
(2)若g(x)在其定义域内为增函数,求a的取值范围;
(3)证明:①f(x)≤x-1;②
+
+…
<
(n∈N,n≥2).
| b |
| x |
| a |
| e |
(1)求a与b的关系;
(2)若g(x)在其定义域内为增函数,求a的取值范围;
(3)证明:①f(x)≤x-1;②
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 2n2-n-1 |
| 4(n+1) |
分析:(1)由题意g(x)=ax-
-2lnx及g(e)=be-
-2 可得ae-
-2=be-
-2结合e+
≠0可求a,b的关系
(2)由(1)知g′(x)=a+
-
=
,构造函数h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立即a≥
在(0,+∞)上恒成立,利用基本不等式可求
得最大值,而a≥
得最大值
(3)证明:①即证:lnx-x+1≤0 (x>0),设k(x)=lnx-x-1,由导数可判断x=1为k(x)的极大值点,而k(x)≤k(1)可证,
②由①知lnx≤x-1,又x>0,可得
≤
=1-
令x=n2,得
≤1-
,从而可得
≤
(1-
),利用该不等式放缩可证
| b |
| x |
| a |
| e |
| b |
| e |
| a |
| e |
| 1 |
| e |
(2)由(1)知g′(x)=a+
| a |
| x2 |
| 2 |
| x |
| ax2-2x+a |
| x2 |
| 2x |
| 1+x2 |
| 2x |
| 1+x2 |
| 2x |
| 1+x2 |
(3)证明:①即证:lnx-x+1≤0 (x>0),设k(x)=lnx-x-1,由导数可判断x=1为k(x)的极大值点,而k(x)≤k(1)可证,
②由①知lnx≤x-1,又x>0,可得
| lnx |
| x |
| x-1 |
| x |
| 1 |
| x |
| lnn2 |
| n2 |
| 1 |
| n2 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| n2 |
解答:解:(1)由题意g(x)=ax-
-2lnx
∵g(e)=be-
-2
∴ae-
-2=be-
-2
∴(a-b)e+(a-b)
=0
∴(a-b)(e+
)=0
∵e+
≠0∴a=b
(2)由(1)知:由题意g(x)=ax-
-2lnx(x>0)
g′(x)=a+
-
=
令h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:
h(x)≥0恒成立.
即ax2-2x+a≥0
a≥
在(0,+∞)上恒成立
又00<
=
≤
=1(x>0)
所以a≥1
(3)证明:①即证:lnx-x+1≤0 (x>0),
设k(x)=lnx-x-1,则k′(x)=
-1=
.
当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,
∴k(x)≤k(1)=0.
即lnx-x+1≤0,∴lnx≤x-1.
②由①知lnx≤x-1,又x>0,
∴
≤
=1-
∵nn∈N*,n≥2,令x=n2,得
≤1-
∴
≤
(1-
)
∴
+
+…+
≤
(1-
+1-
+…+1-
)
=
[(n-1)]-(
+
+…+
)]<
[(n-1)-(
+
+…+
]
=
[n-1-(
-
+
-
+…+
-
)]
=
[n-1-(
-
)]=
| b |
| x |
∵g(e)=be-
| a |
| e |
∴ae-
| b |
| e |
| a |
| e |
∴(a-b)e+(a-b)
| 1 |
| e |
∴(a-b)(e+
| 1 |
| e |
∵e+
| 1 |
| e |
(2)由(1)知:由题意g(x)=ax-
| b |
| x |
g′(x)=a+
| a |
| x2 |
| 2 |
| x |
| ax2-2x+a |
| x2 |
令h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:
h(x)≥0恒成立.
即ax2-2x+a≥0
a≥
| 2x |
| 1+x2 |
又00<
| 2x |
| x2+1 |
| 2 | ||
x+
|
| 2 | ||||
2
|
所以a≥1
(3)证明:①即证:lnx-x+1≤0 (x>0),
设k(x)=lnx-x-1,则k′(x)=
| 1 |
| x |
| 1-x |
| x |
当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,
∴k(x)≤k(1)=0.
即lnx-x+1≤0,∴lnx≤x-1.
②由①知lnx≤x-1,又x>0,
∴
| lnx |
| x |
| x-1 |
| x |
| 1 |
| x |
∵nn∈N*,n≥2,令x=n2,得
| lnn2 |
| n2 |
| 1 |
| n2 |
∴
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| n2 |
∴
| ln2 |
| 22 |
| ln3 |
| 32 |
| lnn |
| n2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
=
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 2n2-n-1 |
| 4(n+1) |
点评:本题主要考查了利用函数的导数判断函数的单调性、函数的极值的求解及利用放缩法证明不等式,还要注意裂项求和在解题中的应用,属于综合性试题
练习册系列答案
相关题目