题目内容

已知函数f(x)=
m-2cosx
sinx
,若f(x)在(0,
π
2
)
内单调递增,则实数m的取值范围是(  )
A.(-∞,2]B.(-∞,2)C.[2,+∞)D.(2,+∞)
f(x)=
m-2cosx
sinx
,得
f(x)=
(m-2cosx)sinx-(m-2cosx)(sinx)
sin2x

=
2sin2x+2cos2x-mcosx
sin2x
=
2-mcosx
sin2x

要使f(x)在(0,
π
2
)
内单调递增,则
2-mcosx≥0在x∈(0,
π
2
)
内恒成立,
m≤
2
cosx
在x∈(0,
π
2
)
内恒成立,
因为在x∈(0,
π
2
)
2
cosx
>2

所以m≤2.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网