题目内容
数列{an}满足a1=1且an+1=(1+
)an+
(n≥1).
(1)用数学归纳法证明:an≥2(n≥2)
(2)设bn=
,证明数列{bn}的前n项和Sn<
(3)已知不等式ln(1+x)<x对x>0成立,证明:an<2e
(n≥1)(其中无理数e=2.71828…)
| 1 |
| n2+n |
| 1 |
| 2n |
(1)用数学归纳法证明:an≥2(n≥2)
(2)设bn=
| an+1-an |
| an |
| 7 |
| 4 |
(3)已知不等式ln(1+x)<x对x>0成立,证明:an<2e
| 3 |
| 4 |
分析:(1)利用数学归纳法的证题步骤,关键验证当n=k+1时不等式成立;
(2)对通项进行放缩,利用裂项法求和,即可证得结论;
(3)先证明n≥2时,lnan+1-lnan≤
+
,再累加,即可证得结论.
(2)对通项进行放缩,利用裂项法求和,即可证得结论;
(3)先证明n≥2时,lnan+1-lnan≤
| 1 |
| n2+n |
| 1 |
| 2n+1 |
解答:证明:(1)①当n=2 时,a2=2,不等式成立.
②假设当n=k(k≥2)时不等式成立,即ak≥2,那么ak+1=(1+
)ak+
>ak≥2.
即当n=k+1时不等式成立.
根据①②可知:an≥2对 n≥2成立.…(4分)
(2)∵
=1+
+
,∴bn=
=
-1=
+
当n=1时,b1=
=1,
当n≥2时,an≥2,bn=
+
≤
+
,
故Sn=b1+b2+…+bn≤1+(
+
+…+
)+(
+
+…+
)
=1+[
-
+
-
+…+
-
]+
[1-(
)n-1]<1+
+
=
…(9分)
(3)当n≥2时,由(1)的结论知:an+1=(1+
)an+
≤(1+
+
)an
∵ln(1+x)<x,
∴lnan+1≤ln(1+
+
)+lnan<lnan+
+
,
∴lnan+1-lnan≤
+
(n≥2)
求和可得lnan-lna2<
+
+…+
+
+
+…+
=
-
+
-
<
而a2=2,∴ln
<
,∴an<2e
(n≥2),而a1=1<2e
故对任意的正整数n,有an<2e
.…(14分)
②假设当n=k(k≥2)时不等式成立,即ak≥2,那么ak+1=(1+
| 1 |
| k2+k |
| 1 |
| 2k |
即当n=k+1时不等式成立.
根据①②可知:an≥2对 n≥2成立.…(4分)
(2)∵
| an+1 |
| an |
| 1 |
| n2+n |
| 1 |
| 2nan |
| an+1-an |
| an |
| an+1 |
| an |
| 1 |
| n2+n |
| 1 |
| 2nan |
当n=1时,b1=
| a2-a1 |
| a1 |
当n≥2时,an≥2,bn=
| 1 |
| n2+n |
| 1 |
| 2nan |
| 1 |
| n2+n |
| 1 |
| 2n+1 |
故Sn=b1+b2+…+bn≤1+(
| 1 |
| 2•3 |
| 1 |
| 3•4 |
| 1 |
| n(n+1) |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
=1+[
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 7 |
| 4 |
(3)当n≥2时,由(1)的结论知:an+1=(1+
| 1 |
| n2+n |
| 1 |
| 2n |
| 1 |
| n2+n |
| 1 |
| 2n+1 |
∵ln(1+x)<x,
∴lnan+1≤ln(1+
| 1 |
| n2+n |
| 1 |
| 2n+1 |
| 1 |
| n2+n |
| 1 |
| 2n+1 |
∴lnan+1-lnan≤
| 1 |
| n2+n |
| 1 |
| 2n+1 |
求和可得lnan-lna2<
| 1 |
| 2•3 |
| 1 |
| 3•4 |
| 1 |
| n(n-1) |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| 22 |
| 1 |
| 2n |
| 3 |
| 4 |
而a2=2,∴ln
| an+1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
故对任意的正整数n,有an<2e
| 3 |
| 4 |
点评:本题考查数学归纳法,考查不等式的证明,考查放缩法、累加法,考查学生分析解决问题的能力,有一定的难度.
练习册系列答案
相关题目