题目内容

已知函数f(x)=x3-x2-x.
(1)求函数f(x)的单调区间;
(2)求曲线y=f(x)在点P(-1,f(-1))处的切线方程.
(本小题满分14分)
(1)函数f(x)的定义域为(-∞,+∞).(1分)f′(x)=3x2-2x-1=3(x+
1
3
)(x-1)
.(4分)
x∈(-∞,-
1
3
)
时,f'(x)>0,此时f(x)单调递增;                   (5分)
x∈(-
1
3
,1)
时,f'(x)<0,此时f(x)单调递减;                     (6分)
当x∈(1,+∞)时,f'(x)>0,此时f(x)单调递增.(7分)
所以函数f(x)的单调增区间为(-∞,-
1
3
)
与(1,+∞),单调减区间为(-
1
3
,1)
.(9分)
(2)因为f(-1)=(-1)3-(-1)2+1=-1,(10分)f'(-1)=3×(-1)2-2×(-1)-1=4,(12分)
所以所求切线方程为y+1=4(x+1),即y=4x+3.(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网