题目内容
2.已知F为抛物线y2=2px(p>0)的焦点,过F的直线l交抛物线于A(x1,y1)、B(x2,y2),O为坐标原点,若△OAB的面积为p2,则y12+y22的值为( )| A. | 10p2 | B. | 12p2 | C. | 14p2 | D. | 16p2 |
分析 对直线的斜率进行分类讨论:①当直线斜率不存在时,直线方程为:x=$\frac{p}{2}$,由$\left\{\begin{array}{l}{x=\frac{p}{2}}\\{{y}^{2}=2px}\end{array}\right.$得到交点坐标,从而得到△OAB的面积,不合题意舍去;
②当直线斜率存在时,直线方程为:y=k(x-$\frac{p}{2}$),由$\left\{\begin{array}{l}{y=k(x-\frac{p}{2})}\\{{y}^{2}=2px}\end{array}\right.$,得 y2-$\frac{2p}{k}y$y-p2=0,由△OAB的面积为p2求出k,进一步求得y12+y22的值.
解答 解:①当直线斜率不存在时,直线方程为:x=$\frac{p}{2}$,
联立$\left\{\begin{array}{l}{x=\frac{p}{2}}\\{{y}^{2}=2px}\end{array}\right.$,得$\left\{\begin{array}{l}{{x}_{1}=\frac{p}{2}}\\{{y}_{1}=-p}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{2}=\frac{p}{2}}\\{{y}_{2}=p}\end{array}\right.$,
此时${S}_{△OAB}=\frac{1}{2}×2P×\frac{p}{2}=\frac{{p}^{2}}{2}$,不合题意;
②当直线斜率存在时,直线方程为:y=k(x-$\frac{p}{2}$),
联立$\left\{\begin{array}{l}{y=k(x-\frac{p}{2})}\\{{y}^{2}=2px}\end{array}\right.$,得y2-$\frac{2p}{k}y$-p2=0.
${y}_{1}+{y}_{2}=\frac{2p}{k},{y}_{1}{y}_{2}=-{p}^{2}$,
由${S}_{△AOB}=\frac{1}{2}•\frac{p}{2}|{y}_{1}-{y}_{2}|$=$\frac{p}{4}\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{p}{4}\sqrt{\frac{4{p}^{2}}{{k}^{2}}+4{p}^{2}}={p}^{2}$,
解得:${k}^{2}=\frac{1}{3}$.
∴y12+y22=$({y}_{1}+{y}_{2})^{2}-2{y}_{1}{y}_{2}=12{p}^{2}+2{p}^{2}=14{p}^{2}$.
故选:C.
点评 本题考查抛物线的简单性质、直线和抛物线的位置关系的综合运用,注意抛物线性质的灵活运用,是中档题.