题目内容
已知抛物线x2=4y上的动点P在x轴上的射影为点M,点A(3,2),则|PA|+|PM|的最小值为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:先根据抛物线方程求得焦点和准线方程,可把问题转化为P到准线与P到A点距离之和最小,进而根据抛物线的定义可知抛物线中P到准线的距离等于P到焦点的距离,进而推断出P、A、F三点共线时|PF|+|PA|距离之和最小,利用两点间距离公式求得|FA|,则|PA|+|PM|可求.
解答:解:依题意可知,抛物线焦点为(0,1),准线方程为y=-1
只需直接考虑P到准线与P到A点距离之和最小即可,(因为x轴与准线间距离为定值
=1不会影响讨论结果),
由于在抛物线中P到准线的距离等于P到焦点的距离,
此时问题进一步转化为|PF|+|PA|距离之和最小即可(F为曲线焦点),
显然当P、A、F三点共线时|PF|+|PA|距离之和最小,为|FA|,
由两点间距离公式得|FA|=
=
,那么P到A的距离与P到x轴距离之和的最小值为|FA|-
=
-1
故选A.
只需直接考虑P到准线与P到A点距离之和最小即可,(因为x轴与准线间距离为定值
| p |
| 2 |
由于在抛物线中P到准线的距离等于P到焦点的距离,
此时问题进一步转化为|PF|+|PA|距离之和最小即可(F为曲线焦点),
显然当P、A、F三点共线时|PF|+|PA|距离之和最小,为|FA|,
由两点间距离公式得|FA|=
| 1+9 |
| 10 |
| p |
| 2 |
| 10 |
故选A.
点评:本题主要考查了抛物线的简单性质.考查了学生数形结合的思想和分析推理能力.
练习册系列答案
相关题目