题目内容
15、已知x∈R,求证:ex≥x+1.
分析:首先构造函数f(x)=ex-x-1,然后求出函数的导数,利用导数与函数单调性的关系进行证明.
解答:证明:设f(x)=ex-x-1,则f′(x)=ex-1,
∴当x=0时,f′(x)=0,f(x)=0.
当x>0时,f′(x)>0,
∴f(x)在(0,+∞)上是增函数,
∴f(x)>f(0)=0.
当x<0时,f′(x)<0,
∴f(x)在(-∞,0)上是减函数,
∴f(x)>f(0)=0.
∴对x∈R都有f(x)≥0,
∴ex≥x+1.
∴当x=0时,f′(x)=0,f(x)=0.
当x>0时,f′(x)>0,
∴f(x)在(0,+∞)上是增函数,
∴f(x)>f(0)=0.
当x<0时,f′(x)<0,
∴f(x)在(-∞,0)上是减函数,
∴f(x)>f(0)=0.
∴对x∈R都有f(x)≥0,
∴ex≥x+1.
点评:此题主要考查函数导数与函数单调性之间的关系,掌握并会熟练运用导数与函数单调性的关系.
练习册系列答案
相关题目