搜索
题目内容
抛物线
绕
轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,该正方体的一个面恰好与旋转体的开口面平齐,则此正方体的体积是
.
试题答案
相关练习册答案
8
试题分析:根据旋转体的对称性,不妨设正方体的一个对角面恰好在
平面内,组合体被此面所截得的截面图如下:
设正方体的棱长为
,则
,
,
因为
,所以,
,即:
解得:
或
,因为
,所以
.
练习册系列答案
中考复习信息快递系列答案
中考复习指导基础训练稳夺高分系列答案
中考攻略系列答案
南粤学典中考解读系列答案
中考解读考点精练系列答案
中考金牌3年中考3年模拟系列答案
中考精典系列答案
中考模拟卷江苏凤凰教育出版社系列答案
中考模拟试题汇编系列答案
中考内参系列答案
相关题目
设椭圆
过点
,离心率为
.
(1)求椭圆
的方程;
(2)求过点
且斜率为
的直线被椭圆所截得线段的中点坐标.
已知椭圆
:
,直线
交椭圆
于
两点.
(Ⅰ)求椭圆
的焦点坐标及长轴长;
(Ⅱ)求以线段
为直径的圆的方程.
已知
是抛物线
上的两个点,点
的坐标为
,直线
的斜率为
.设抛物线
的焦点在直线
的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且
,过
两点分别作W的切线,记两切线的交点为
. 判断四边形
是否为梯形,并说明理由.
已知椭圆
,椭圆
以
的长轴为短轴,且与
有相同的离心率.
(1)求椭圆
的方程;
(2)设O为坐标原点,点A,B分别在椭圆
和
上,
,求直线
的方程.
已知椭圆
的离心率为
,其中左焦点
(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x
2
+y
2
=1上,求m的值.
已知抛物线
上一点P到y轴的距离为6,则点P到焦点的距离为( )
A.7
B.8
C.9
D.10
正方体
中,
为侧面
所在平面上的一个动点,且
到平面
的距离是
到直线
距离的
倍,则动点
的轨迹为( )
A.椭圆
B.双曲线
C.抛物线
D.圆
已知圆
的圆心为抛物线
的焦点,直线
与圆
相切,则该圆的方程为( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案