题目内容
已知曲线f(x)=xn+1(n∈N*)与直线x=1交于点P,若曲线y=f(x)在点P处的切线与x轴交点的横坐标为xn,则log2012x1+log2012x2+…+log2012x2011=( )
| A.-log20122011-2 | B.-1 |
| C.log20122011-1 | D.1 |
由题意可得P(1,1)
对函数f(x)=xn+1求导可得,f′(x)=(n+1)xn
∴y=f(x)在点P处的切线斜率K=f′(1)=n+1,切线方程为y-1=(n+1)(x-1)
令y=0可得,xn=
∴x1x2…x2011=
•
•
…
=
∴log2012x1+log2012x2+…+log2012x2011=log2012(x1x2…xn)
=log2012
=-1
故选B
对函数f(x)=xn+1求导可得,f′(x)=(n+1)xn
∴y=f(x)在点P处的切线斜率K=f′(1)=n+1,切线方程为y-1=(n+1)(x-1)
令y=0可得,xn=
| n |
| n+1 |
∴x1x2…x2011=
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 2011 |
| 2012 |
| 1 |
| 2012 |
∴log2012x1+log2012x2+…+log2012x2011=log2012(x1x2…xn)
=log2012
| 1 |
| 2012 |
故选B
练习册系列答案
相关题目