题目内容

要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度为( )

A.10m
B.20m
C.20m
D.40m
【答案】分析:设出AB=x,进而根据题意可表示出BD,DC,进而在△DBC中利用余弦定理建立方程求得x.
解答:解:由题可设AB=x,则
在△DBC中,∠BCD=120°,CD=40,由余弦定理得BD2=BC2+CD2-2BC•CD•cos∠DCB
即:(2=(40)2+x2-2×40•x•cos120°
整理得:x2-20x-800=0
解得x=40或x=-20(舍)
所以,所求塔高为40米
故选D.
点评:本题主要考查了解三角形的实际应用.考查了运用数学知识,建立数学模型解决实际问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网