题目内容
定义
为n个正数x1,x2,…,xn的“平均倒数”.若正项数列{an}的前n项的“平均倒数”为
,则数列{an}的通项公式为an=( )
| n |
| x1+x2+…xn |
| 1 |
| 2n+1 |
| A.2n+1 | B.2n-1 | C.4n-1 | D.4n+1 |
设数列{an}的前n项和为Sn,依题意,
=
,
∴Sn=n(2n+1)=2n2+n,
∴当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时,a1=S1=2+1=3,也符合上式;
∴an=4n-1.
故选C.
| n |
| Sn |
| 1 |
| 2n+1 |
∴Sn=n(2n+1)=2n2+n,
∴当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时,a1=S1=2+1=3,也符合上式;
∴an=4n-1.
故选C.
练习册系列答案
相关题目