题目内容

已知0<A<π,且满足sinA+cosA=
7
13
,则
5sinA+4cosA
15sinA-7cosA
=
8
43
8
43
分析:先对所给的式子两边平方后求出,2sinAcosA的值再判断出A的具体范围,进而判断出sinA-cosA的符号,再由sinA±cosA与
2sinAcosA的关系求出sinA-cosA的值,再求出A的正弦值和余弦值,代入所求的式子进行求解.
解答:解:将sinA+cosA=
7
13
两边平方得,2sinAcosA=-
120
169
<0,
∵0<A<π,∴
π
2
<A<π
,∴sinA-cosA>0
∴sinA-cosA=
1-2sinAcosA
=
17
13
,再由sinA+cosA=
7
13

解得,sinA=
12
13
,cosA=-
5
13

5sinA+4cosA
15sinA-7cosA
=
12
13
+4×(-
5
13
15×
12
13
-7×(-
5
13
=
8
43

故答案为:
8
43
点评:本题考查了同角三角函数关系的应用,以及sinA±cosA与2sinAcosA的关系的应用,注意三角函数值的符号判断,这是容易出错的地方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网