题目内容
设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为:
- A.

- B.

- C.

- D.

C
分析:利用线面垂直作出二面角的平面角,然后在平面PAB中利用互补求出∠APB=120度,最后利用余弦定理解三角形PAB,得出AB的长为
.
解答:
解:设平面PAB与二面角的棱l交于点Q,
连接AQ、BQ可得直线l⊥平面PAQB,
所以∠AQB是二面角α-l-β的平面角,∠AQB=60°,
故△PAB中,∠APB=180°-60°=120°,PA=4,PB=2,
由余弦定理得:AB2=PA2+PB2-2PA•PBcos120°,
,
所以
,
故选C.
点评:本题考查直线与平面垂直的判定和二面角平面的定义,属于中档题,在做题时应该注意利用正、余弦定理解三角形所起的作用.
分析:利用线面垂直作出二面角的平面角,然后在平面PAB中利用互补求出∠APB=120度,最后利用余弦定理解三角形PAB,得出AB的长为
解答:
连接AQ、BQ可得直线l⊥平面PAQB,
所以∠AQB是二面角α-l-β的平面角,∠AQB=60°,
故△PAB中,∠APB=180°-60°=120°,PA=4,PB=2,
由余弦定理得:AB2=PA2+PB2-2PA•PBcos120°,
所以
故选C.
点评:本题考查直线与平面垂直的判定和二面角平面的定义,属于中档题,在做题时应该注意利用正、余弦定理解三角形所起的作用.
练习册系列答案
相关题目
设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为:( )
A、2
| ||
B、2
| ||
C、2
| ||
D、4
|