题目内容
【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为
人,每位员工的培训费为
元,培训机构的利润为
元.
(1)写出
与
之间的函数关系式;
(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.
【答案】(1)
;(2)![]()
【解析】分析:(1)根据题意,只要注意超过30人时,每多1人才能减少10元,因此可分类,
和
(
),在
时,培训费用为
;
(2)利润是用每人的培训费用乘以培训人数减去成本12000,根据一次函数与二次函数的性质分类求得最大值,然后比较即得.
详解:(1)依题意得,当
时,
;
当
时,
.
.
(2)当
时,
,
时,
取得最大值
.
当
时,
,
,
当
或
时,
取得最大值
.
因为
,
当公司参加培训的员工人数为
或
时,
培训机构可获得最大利润
元.
【题目】随着共享单车的蓬勃发展,越来越多的人将共享单车作为短距离出行的交通工具.为了解不同年龄的人们骑乘单车的情况,某共享单车公司对某区域不同年龄的骑乘者进行了调查,得到数据如下:
年龄 | 15 | 25 | 35 | 45 | 55 | 65 |
骑乘人数 | 95 | 80 | 65 | 40 | 35 | 15 |
(1)求
关于
的线性回归方程,并估计年龄为40岁人群的骑乘人数;
(2)为了回馈广大骑乘者,该公司在五一当天通过
向每位骑乘者的前两次骑乘分别随机派送一张面额为1元,或2元,或3元的骑行券.已知骑行一次获得1元券,2元券,3元券的概率分别是
,
,
,且每次获得骑行券的面额相互独立.若一名骑乘者五一当天使用了两次该公司的共享单车,记该骑乘者当天获得的骑行券面额之和为
,求
的分布列和数学期望.
参考公式:
,
.
参考数据:
,
.