题目内容

(2011•武昌区模拟)已知点M(x,y)与点A1(-1,0),A2(1,0)连线的斜率之积为3.
(I)求点M的轨迹方程;
(II)是否存在点M(x,y)(x>1),使M(x,y)到点B(-2,0)和点C(0,2)的距离之和最小?若存在,求出点M(x,y)的坐标;若不存在,请说明理由.
分析:(I)先表示出两连线的斜率,利用其乘积为3建立方程,化简即可得到点M的轨迹方程.
(II)假设存在点M(x,y)(x>1),使M(x,y)到点B(-2,0)和点C(0,2)的距离之和最小.由(Ⅰ)可知,点M(x,y)在双曲线x2-
y2
3
=1(x≠±1)
的右支上,利用|MB|+|MC|=|MC|+|MF|+2≥|CF|+2=2
2
+2,当三点C,M,F共线时,|MB|+|MC|取得最小值,将直线CF:x+y=2代入双曲线x2-
y2
3
=1(x≠±1)
,可求点M的坐标.
解答:解:(Ⅰ)直线MA1和MA2的斜率分别为
y
x+1
y
x-1
(x≠±1)
,…(2分)
依题意,点M(x,y)与点A1(-1,0),A2(1,0)连线的斜率之积为3
y
x+1
×
y
x-1
=3
,即y2-3x2=-3.
所求轨迹方程为x2-
y2
3
=1(x≠±1)
. …(5分)
(Ⅱ)假设存在点M(x,y)(x>1),使M(x,y)到点B(-2,0)和点C(0,2)的距离之和最小
由(Ⅰ)可知,点M(x,y)在双曲线x2-
y2
3
=1(x≠±1)
的右支上,
由双曲线的定义知右焦点为F(2,0),…(6分)
∵|CF|=2
2
且|MB|-|MF|=2,即|MB|=|MF|+2.…(8分)
所以|MB|+|MC|=|MC|+|MF|+2≥|CF|+2=2
2
+2.…(10分)
当三点C,M,F共线时,|MB|+|MC|最小值为2
2
+2.…(11分)
这时,直线CF:x+y=2代入双曲线x2-
y2
3
=1(x≠±1)
,得2x2+4x-7=0.
解得x=-1±
3
2
2

因为x>1,所以x=-1+
3
2
2
,此时y=2-x=3-
3
2
2

因此存在一点M(-1+
3
2
2
,3-
3
2
2
)
,使|MB|+|MC|最小.…(12分)
点评:本题的考点是双曲线的简单性质,主要考查利用坐标建立方程,考查双曲线的定义,同时考查最值问题的求解,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网