题目内容
将函数图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到的图象,则 .
若直线 与曲线有公共点,则的取值范围是( )
A.
B.
C.
D.
关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学,每人随机写下一个都小于1 的正实数对;再统计两数能与1构成钝角三角形三边的数对的个数;最后再根据统计数来估计的值.假如统计结果是,那么可以估计为 .(用分数表示)
已知函数,则 .
如图,在△中,,,高,在内作射线交于点,求的概率 .
已知是圆心在坐标原点的单位圆上的两点,分别位于第一象限和第四象限,且点的纵坐标为,点的横坐标为,则 .
过抛物线()的焦点作倾斜角为的直线,若直线与抛物线在第一象限的交点为并且点也在双曲线(,)的一条渐近线上,则双曲线的离心率为( )
A. B. C. D.
已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是( )
设.
(Ⅰ)求的单调区间;
(Ⅱ)在锐角中,角的对边分别为,若,求面积的最大值.