题目内容
空间四边形OABC中,OB=OC,AOB=AOC=600,则 ( )
A. B. C. D.0
D
已知函数,
(Ⅰ)若函数在上是减函数,求实数的取值范围;
(Ⅱ)设,是否存在实数,当时,函数的最小值是,若存在,求出的值;若不存在,说明理由.
(III)当 时,证明:
阅读如图所示的程序框图,输出的结果的值为( )
A.0 B. C. D.
函数的导数为 。
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD.
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求锐二面角ACDE的余弦值.
设圆锥曲线C的两个焦点分别为,若曲线C上存在点P满足::= 4:3:2,则曲线C的离心率等于 ( )
A. B. C. D.
以下四个关于圆锥曲线的命题中:
①设为两个定点,为非零常数,,则动点的轨迹为双曲线;
②已知圆上一定点和一动点,为坐标原点,若则动点的轨迹为圆;
③,则双曲线与的离心率相同;
④已知两定点和一动点,若,则点的轨迹关于原点对称.
其中真命题的序号为 (写出所有真命题的序号).
点P(4,-2)与圆上任一点连线的中点的轨迹方程是( )
A. B.
C. D.
对于定义域为的函数和常数,若对任意正实数,使得恒成立,则称函数为“敛函数”.现给出如下函数:
①;②;③ ;④.
其中为“敛1函数”的有 ( )A.①② B.③④ C. ②③④ D.①②③