题目内容

π
4
<x<
π
2
,则函数y=tan2xtan3x的最大值为
 
分析:见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx的函数,将tanx看破成整体,最后转化成函数的最值问题解决.
解答:解:令tanx=t,∵
π
4
<x<
π
2
∴t>1

y=tan2xtan3x=
2tan4x
1-tan2x
=
2t4
1-t2
=
2
1
t4
-
1
t2
=
2
(
1
t2
-
1
2
)
2
-
1
4
2
-
1
4
=-8

故填:-8.
点评:本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网