题目内容
【题目】已知直线
.
(1)当
时,求
的单调区间;
(2)若对任意
时,
恒成立,求实数
的取值范围.
【答案】(1)
在
单减,在
单增.(2)![]()
【解析】
(1)求出f(x)的导数,得到f′(x),结合
可解得
与
的范围,即可求出函数的单调区间.
(2)通过讨论a的范围,得到导函数的正负,进而研究函数f(x)的单调性,求得不同情况下的函数f(x)的最小值,解出满足
的a的范围即可.
(1)当
时,
,所以
,
而
,且
在
单调递增,所以当
时,
;
当
时,
,所以
在
单减,在
单增.
(2)因为
,
,而当
时,
.
①当
,即
时,
,
所以
在
单调递增,所以
,
故
在
上单调递增,所以
,符合题意,所以
符合题意.
②当
,即
时,
在
单调递增,所以
,取
,则
,
所以存在唯一
,使得
,
所以当
时,
,当
时,
,
进而在
单减,在
单增.
当
时,
,因此
在
上单减,
所以
.因而与题目要求在
,
恒成立矛盾,此类情况不成立,舍去.
综上所述,
的取值范围为
.
【题目】第一次大考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于
分为优秀,
分以下为非优秀,统计成绩后,得到如下
列联表,且已知在甲、乙两个文科班全部
人中随机抽取
人为优秀的概率为
.
(I)请完成
列联表:
优秀 | 非优秀 | 合计 | |
甲班 |
| ||
乙班 |
| ||
合计 |
|
(Ⅱ)根据列联表的数据能否在犯错误的概率不超过
的前提下认为成绩与班级有关系?
参考公式和临界值表:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
【题目】某企业2018年招聘员工,其中
,
,
,
,
五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:
岗位 | 男性 应聘人数 | 男性 录用人数 | 男性 录用比例 | 女性 应聘人数 | 女性 录用人数 | 女性 录用比例 |
| 269 | 167 |
| 40 | 24 |
|
| 40 | 12 |
| 202 | 62 |
|
| 177 | 57 |
| 184 | 59 |
|
| 44 | 26 |
| 38 | 22 |
|
| 3 | 2 |
| 3 | 2 |
|
总计 | 533 | 264 |
| 467 | 169 |
|
(1)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(2)从应聘
岗位的6人中随机选择2人.记
为这2人中被录用的人数,求
的分布列和数学期望;
(3)表中
,
,
,
,
各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于
),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
【题目】共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对
两个品牌的共享单车在编号分别为
的五个城市的用户人数(单位:十万)进行统计,得到数据如下:
城市 品牌 | 1 | 2 | 3 | 4 | 5 |
A品牌 | 3 | 4 | 12 | 6 | 8 |
B品牌 | 4 | 3 | 7 | 9 | 5 |
(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有85%的把握认为“优城”和共享单车品牌有关?
(Ⅱ)若不考虑其它因素,为了拓展市场,对A品牌要从这五个城市选择三个城市进行宣传,
(ⅰ)求城市2被选中的概率;
(ⅱ)求在城市2被选中的条件下城市3也被选中的概率.
![]()