题目内容
已知sin(2α+
)=
sin(α+
),0<α<
,则sinα=
.
| π |
| 3 |
| 6 |
| 5 |
| π |
| 6 |
| π |
| 2 |
4
| ||
| 10 |
4
| ||
| 10 |
分析:由二倍角的正弦公式结合已知可得cos(α+
)的值,由平方关系可得sin(α+
)的值,而sinα=sin[(α+
)-
],由两角差的正弦公式展开代入数值可得.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:解:由三角函数的公式可得sin(2α+
)=sin2(α+
)
=2sin(α+
)cos(α+
)=
sin(α+
),
∵0<α<
,∴
<α+
<
,
∴sin(α+
)≠0,
∴cos(α+
)=
,
∴sin(α+
)=
,
∵sinα=sin[(α+
)-
]
∴sinα=sin[(α+
)-
]=
sin(α+
)-
cos(α+
)
=
×
-
×
=
.
故答案为:
.
| π |
| 3 |
| π |
| 6 |
=2sin(α+
| π |
| 6 |
| π |
| 6 |
| 6 |
| 5 |
| π |
| 6 |
∵0<α<
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
∴sin(α+
| π |
| 6 |
∴cos(α+
| π |
| 6 |
| 3 |
| 5 |
∴sin(α+
| π |
| 6 |
| 4 |
| 5 |
∵sinα=sin[(α+
| π |
| 6 |
| π |
| 6 |
∴sinα=sin[(α+
| π |
| 6 |
| π |
| 6 |
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
=
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
4
| ||
| 10 |
故答案为:
4
| ||
| 10 |
点评:本题考查两角和与差的正弦函数公式,涉及整体的思想,属中档题.
练习册系列答案
相关题目