题目内容
数列{an}满足a1=1,a2=2,
=
,n=1,2,3,….
(I)求证:an+1=an+
,(n=1,2,3…)
(II)求证:
≤an≤
;
(III)令bn=
,(n=1,2,3,…),判断bn与bn+1的大小,并说明理由.
| an+2 |
| an |
| ||
|
(I)求证:an+1=an+
| 1 |
| an |
(II)求证:
| 2n-1 |
| 3n-2 |
(III)令bn=
| an+1 | ||
|
分析:(Ⅰ)由题设知当n≥1时,
=
,所以
=
,
=
,由此能够导出an+1=an+
.
(Ⅱ)由a1=1,an+1=an+
,知0<
≤1,当n≥2时,
=(an-1+
)2=
+
+2,上此入手能导出
≤an≤
.
(Ⅲ)
=
=(1+
)
<(1+
)
=
=
=
<1,由此知bn+1<bn.
| an+2 |
| an |
| ||
|
| an+2an+1 | ||
|
| an+1an | ||
|
| an+2 | ||
an+1+
|
| an+1 | ||
an+
|
| 1 |
| an |
(Ⅱ)由a1=1,an+1=an+
| 1 |
| an |
| 1 | ||
|
| a | 2 n |
| 1 |
| an-1 |
| a | 2 n-1 |
| 1 | ||
|
| 2n-1 |
| 3n-2 |
(Ⅲ)
| bn+1 |
| bn |
an+2
| ||
an+1
|
| 1 | ||
|
| ||
|
| 1 |
| 2n+1 |
| ||
|
2(n+1)
| ||
(2n+1)
|
2
| ||
| (2n+1) |
|
解答:解:(Ⅰ)由于a1=1,a2=2,
=
,易知对?n≥1,an≠0.
当n≥1时,
=
可得
=
,
从而
=
,
依此递推可得
=
═
=
=1,
从而an+1=an+
,(n=1,2,3,)(4分)
(Ⅱ)显然,由a1=1,an+1=an+
可知:?n≥1,an≥1成立,即0<
≤1,
当n≥2时,
=(an-1+
)2=
+
+2,
故2<an2-an-12≤3,于是2<an2-an-12≤32<an-12-an-22≤32<an-22-an-32≤3
2<a32-a22≤32<a22-a12≤3
将经上各式相加得2(n-1)<an2-a12≤3(n-1),
即得
≤an≤
;(亦可用数学归纳法)(9分)
(Ⅲ)
=
=(1+
)
<(1+
)
=
=
=
<1,故bn+1<bn.(13分)
| an+2 |
| an |
| ||
|
当n≥1时,
| an+2 |
| an |
| ||
|
| an+2an+1 | ||
|
| an+1an | ||
|
从而
| an+2 | ||
an+1+
|
| an+1 | ||
an+
|
依此递推可得
| an+1 | ||
an+
|
| an-1 | ||
an-2+
|
| a2 | ||
a1+
|
| 2 | ||
1+
|
从而an+1=an+
| 1 |
| an |
(Ⅱ)显然,由a1=1,an+1=an+
| 1 |
| an |
| 1 | ||
|
当n≥2时,
| a | 2 n |
| 1 |
| an-1 |
| a | 2 n-1 |
| 1 | ||
|
故2<an2-an-12≤3,于是2<an2-an-12≤32<an-12-an-22≤32<an-22-an-32≤3
2<a32-a22≤32<a22-a12≤3
将经上各式相加得2(n-1)<an2-a12≤3(n-1),
即得
| 2n-1 |
| 3n-2 |
(Ⅲ)
| bn+1 |
| bn |
an+2
| ||
an+1
|
| 1 | ||
|
| ||
|
| 1 |
| 2n+1 |
| ||
|
=
2(n+1)
| ||
(2n+1)
|
2
| ||
| (2n+1) |
|
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目