题目内容

数列{an}满足a1=1,a2=2,
an+2
an
=
a
2
n+2
+1
a
2
n
+1
,n=1,2,3,….
(I)求证:an+1=an+
1
an
,(n=1,2,3…)
(II)求证:
2n-1
an
3n-2

(III)令bn=
an+1
n
,(n=1,2,3,…),判断bn与bn+1的大小,并说明理由.
分析:(Ⅰ)由题设知当n≥1时,
an+2
an
=
a
2
n+1
+1
a
2
n
+1
,所以
an+2an+1
a
2
n+1
+1
=
an+1an
a
2
n
+1
an+2
an+1+
1
an+1
=
an+1
an+
1
an
,由此能够导出an+1=an+
1
an

(Ⅱ)由a1=1,an+1=an+
1
an
,知0<
1
a
2
n
≤1
,当n≥2时,
a
2
n
=(an-1+
1
an-1
)2=
a
2
n-1
+
1
a
2
n-1
+2
,上此入手能导出
2n-1
an
3n-2

(Ⅲ)
bn+1
bn
=
an+2
n
an+1
n+1
=(1+
1
a
2
n+1
)
n
n+1
<(1+
1
2n+1
)
n
n+1
=
2(n+1)
n
(2n+1)
n+1
=
2
n(n+1)
(2n+1)
=
4n2+4n
4n2+4n+1
<1
,由此知bn+1<bn
解答:解:(Ⅰ)由于a1=1,a2=2,
an+2
an
=
a
2
n+1
+1
a
2
n
+1
,易知对?n≥1,an≠0.
当n≥1时,
an+2
an
=
a
2
n+1
+1
a
2
n
+1
可得
an+2an+1
a
2
n+1
+1
=
an+1an
a
2
n
+1

从而
an+2
an+1+
1
an+1
=
an+1
an+
1
an

依此递推可得
an+1
an+
1
an
=
an-1
an-2+
1
an-2
a2
a1+
1
a1
=
2
1+
1
1
=1

从而an+1=an+
1
an
,(n=1,2,3,)(4分)
(Ⅱ)显然,由a1=1,an+1=an+
1
an
可知:?n≥1,an≥1成立,即0<
1
a
2
n
≤1

当n≥2时,
a
2
n
=(an-1+
1
an-1
)2=
a
2
n-1
+
1
a
2
n-1
+2

故2<an2-an-12≤3,于是2<an2-an-12≤32<an-12-an-22≤32<an-22-an-32≤3
2<a32-a22≤32<a22-a12≤3
将经上各式相加得2(n-1)<an2-a12≤3(n-1),
即得
2n-1
an
3n-2
;(亦可用数学归纳法)(9分)
(Ⅲ)
bn+1
bn
=
an+2
n
an+1
n+1
=(1+
1
a
2
n+1
)
n
n+1
<(1+
1
2n+1
)
n
n+1

=
2(n+1)
n
(2n+1)
n+1
=
2
n(n+1)
(2n+1)
=
4n2+4n
4n2+4n+1
<1
,故bn+1<bn.(13分)
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网