题目内容
【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若
,则实数m的取值范围是( )
A.(﹣∞,1]
B.![]()
C.[1,+∞)
D.![]()
【答案】D
【解析】解:令g(x)=f(x)+2x﹣
, g′(x)=f′(x)+2﹣x,当x≤1时,恒有f'(x)+2<x.
∴当x≤1时,g(x)为减函数,
而g(2﹣x)=f(2﹣x)+2(2﹣x)﹣
,
∴f(x)+f(2﹣x)=g(x)﹣2x+
+g(2﹣x)﹣2(2﹣x)+
=g(x)+g(2﹣x)+x2﹣2x﹣2=x2﹣2x+1.
∴g(x)+g(2﹣x)=3.
则g(x)关于(1,3)中心对称,则g(x)在R上为减函数,
由
,得f(m)+2m
≥f(1﹣m)+2(1﹣m)﹣
,
即g(m)≥g(1﹣m),
∴m≤1﹣m,即m
.
∴实数m的取值范围是(﹣∞,
].
故选:D.
【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减才能得出正确答案.
练习册系列答案
相关题目