题目内容
在⊿ABC中,BC=
,AC=3,sinC=2sinA
(I) 求AB的值:
(II) 求sin
的值
![]()
本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系、二倍角的正弦与余弦、两角差的正弦等基础知识,考查基本运算能力。满分12分。
(Ⅰ)解:在△ABC中,根据正弦定理,
![]()
于是AB=![]()
(Ⅱ)解:在△ABC中,根据余弦定理,得cosA=![]()
于是 sinA=![]()
从而sin2A=2sinAcosA=
,cos2A=cos2A-sin2A=
![]()
所以 sin(2A-
)=sin2Acos
-cos2Asin
=![]()
练习册系列答案
相关题目
在△ABC中,|BC|=2|AB|,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
在△ABC中,(
+
)•
=|
|2,
•
=3,|
|=2,则△ABC的面积是( )
| BC |
| BA |
| AC |
| AC |
| BA |
| BC |
| BC |
A、
| ||||
B、
| ||||
C、
| ||||
| D、1 |