题目内容
8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与抛物线y2=4cx(其中c=$\sqrt{{a}^{2}+{b}^{2}}$)交于A,B两点,若|AB|=4c,则双曲线的离心率为( )| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{2}$+1 |
分析 由双曲线和抛物线关于x轴对称,可设A的纵坐标为2c,代入抛物线的方程可得,A的横坐标为c,代入双曲线的方程,运用离心率公式,解方程即可得到所求值.
解答 解:由双曲线和抛物线关于x轴对称,
可设A的纵坐标为2c,代入抛物线的方程可得,
A的横坐标为$\frac{4{c}^{2}}{4c}$=c,
将A(c,2c)代入双曲线的方程可得,
$\frac{{c}^{2}}{{a}^{2}}$-$\frac{4{c}^{2}}{{b}^{2}}$=1,由e=$\frac{c}{a}$和c2=a2+b2,
可得e2-$\frac{4{e}^{2}}{{e}^{2}-1}$=1,即为e4-6e2+1=0,
解得e2=3+2$\sqrt{2}$(3-2$\sqrt{2}$舍去),
解得e=1+$\sqrt{2}$.
故选:D.
点评 本题考查双曲线和抛物线的方程和性质,主要考查离心率的求法,注意运用对称性确定A的坐标是解题的关键,属于中档题.
练习册系列答案
相关题目
18.已知函数f(x)=$\left\{\begin{array}{l}{sin(2x+\frac{π}{3})(x≥0)}\\{cos(ωx+φ)(x<0)}\end{array}\right.$(其中ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$).若对于任意的x均有f(x-$\frac{π}{6}$)=f($\frac{π}{3}$-x),则sin(ωφ)=( )
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
3.等差数列{an}中,若a1+a9=4,则a5等于( )
| A. | 2 | B. | 4 | C. | -2 | D. | -4 |
14.为了研究数学、物理学习成绩的关联性,某位老师从一次考试中随机抽取30名学生,将数学、物理成绩进行统计,所得数据如表,其中数学成绩在120分以上(含120分)为优秀,物理成绩在80分以上(含80分)为优秀.
(1)根据表格完成下面2×2的列联表:
(2)若这一次考试物理成绩y关于数学成绩x的回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,
由图中数据计算成$\overline{x}$=120,$\overline{y}$=80,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=2736,$\sum_{i=1}^{n}$(xi-$\overline{x}$)2=8480,若y关于x的回归方程,据此估计,数学成绩每提高10分,物理成绩约提高多少分?(精确到0.1).
附1:独立性检验:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附2:若(x1,y1),(x2,y2),…(xn,yn)为样本点,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$为回归直线,
则$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 编号 | 数学成绩xi | 物理成绩yi | 编号 | 数学成绩xi | 物理成绩yi | 编号 | 数学成绩xi | 物理成绩yi |
| 1 | 108 | 82 | 11 | 124 | 80 | 21 | 122 | 64 |
| 2 | 112 | 76 | 12 | 136 | 86 | 22 | 136 | 82 |
| 3 | 130 | 78 | 13 | 127 | 83 | 23 | 114 | 84 |
| 4 | 132 | 91 | 14 | 80 | 73 | 24 | 121 | 80 |
| 5 | 108 | 68 | 15 | 138 | 81 | 25 | 88 | 52 |
| 6 | 140 | 88 | 16 | 141 | 91 | 26 | 142 | 83 |
| 7 | 143 | 92 | 17 | 109 | 85 | 27 | 125 | 69 |
| 8 | 99 | 72 | 18 | 100 | 80 | 28 | 135 | 90 |
| 9 | 106 | 84 | 19 | 92 | 73 | 29 | 112 | 82 |
| 10 | 120 | 77 | 20 | 132 | 82 | 30 | 128 | 92 |
| 数学成绩不优秀 | 数学成绩优秀 | 合计 | |
| 物理成绩不优秀 | |||
| 物理成绩优秀 | |||
| 合计 |
由图中数据计算成$\overline{x}$=120,$\overline{y}$=80,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=2736,$\sum_{i=1}^{n}$(xi-$\overline{x}$)2=8480,若y关于x的回归方程,据此估计,数学成绩每提高10分,物理成绩约提高多少分?(精确到0.1).
附1:独立性检验:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.15 | 0.10 | 0.050 | 0.010 |
| k | 2.072 | 2.706 | 3.841 | 6.635 |
则$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
15.已知某商品进价为26元,若要求利润不小于30%,则销售价至少为(精确到元)( )
| A. | 33元 | B. | 34元 | C. | 35元 | D. | 36元 |