题目内容
已知向量
=(2,0),
=
=(0,1),动点M到定直线y=1的距离等于d,并且满足
•
=k(
•
-d2),其中O是坐标原点,k是参数.
(1)求动点M的轨迹方程,并判断曲线类型;
(2)当k=
时,求|
+2
|的最大值和最小值;
(3)如果动点M的轨迹是圆锥曲线,其离心率e满足
≤e≤
,求实数k的取值范围.
| OA |
| OC |
| AB |
| OM |
| AM |
| CM |
| BM |
(1)求动点M的轨迹方程,并判断曲线类型;
(2)当k=
| 1 |
| 2 |
| OM |
| AM |
(3)如果动点M的轨迹是圆锥曲线,其离心率e满足
| ||
| 3 |
| ||
| 2 |
(1)设M(x,y),由题设可得A(2,0),B(2,1),C(0,1)
∴
=(x,y),
=(x-2,y),
=(x,y-1),
=(x-2,y-1),d=|y-1|,
因
•
=k(
•
-d2)
∴(x,y)•(x-2,y)=
k[(x,y-1)•(x-2,y-1)-|y-1|2]
即(1-k)(x2-2x)+y2=0为所求轨迹方程.
当k=1时,y=0,动点M的轨迹是一条直线;
当k=0时,x2-2x+y2=0,动点M的轨迹是圆;
当k≠1时,方程可化为(x-1)2+
=1,当k>1时,动点M的轨迹是双曲线;
当0<k<1或k<0时,动点M的轨迹是椭圆.
(2)当k=
时,M的轨迹方程为(x-1)2+
=1,.得:0≤x≤2,y2=
-
(x-1)2.
∵|
+2
|2=|(x,y)+2(x-2,y)|2=|(3x-4,3y)|2
=(3x-4)2+9y2=(3x-4)2+9[
-
(x-1)2]
=
(x-
)2+
.
∴当x=
时,|
+2
|2取最小值
当x=0时,|
+2
|2取最大值16.
因此,|
+2
|的最小值是
,最大值是4.
(3)由于
≤e≤
,即e<1,此时圆锥曲线是椭圆,其方程可化为(x-1)2+
=1,
①当0<k<1时,a2=1,b2=1-k,c2=1-(1-k)=k,e2=
=k,∵
≤e≤
,∴
≤k≤
;
②当k<0时,a2=1-k,b2=1,c2=(1-k)-1=-k,e2=
=
=
,∵
≤e≤
,∴
≤
≤
,而k<0得,-1≤k≤-
.
综上,k的取值范围是[-1,-
]∪[
,
].
∴
| OM |
| AM |
| CM |
| BM |
因
| OM |
| AM |
| CM |
| BM |
∴(x,y)•(x-2,y)=
k[(x,y-1)•(x-2,y-1)-|y-1|2]
即(1-k)(x2-2x)+y2=0为所求轨迹方程.
当k=1时,y=0,动点M的轨迹是一条直线;
当k=0时,x2-2x+y2=0,动点M的轨迹是圆;
当k≠1时,方程可化为(x-1)2+
| y2 |
| 1-k |
当0<k<1或k<0时,动点M的轨迹是椭圆.
(2)当k=
| 1 |
| 2 |
| y2 | ||
|
| 1 |
| 2 |
| 1 |
| 2 |
∵|
| OM |
| AM |
=(3x-4)2+9y2=(3x-4)2+9[
| 1 |
| 2 |
| 1 |
| 2 |
=
| 9 |
| 2 |
| 5 |
| 3 |
| 7 |
| 2 |
∴当x=
| 5 |
| 3 |
| OM |
| AM |
| 7 |
| 2 |
当x=0时,|
| OM |
| AM |
因此,|
| OM |
| AM |
| ||
| 2 |
(3)由于
| ||
| 3 |
| ||
| 2 |
| y2 |
| 1-k |
①当0<k<1时,a2=1,b2=1-k,c2=1-(1-k)=k,e2=
| c2 |
| a2 |
| ||
| 3 |
| ||
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
②当k<0时,a2=1-k,b2=1,c2=(1-k)-1=-k,e2=
| c2 |
| a2 |
| -k |
| 1-k |
| k |
| k-1 |
| ||
| 3 |
| ||
| 2 |
| 1 |
| 3 |
| k |
| k-1 |
| 1 |
| 2 |
| 1 |
| 2 |
综上,k的取值范围是[-1,-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
练习册系列答案
相关题目