题目内容

已知数列{an}中,a1=1,an<an+1,设bn=
an+1-an
an+1
an+1
,Sn=b1+b2+…+bn,求证:
(Ⅰ)bn<2(
1
an
-
1
an+1
)

(Ⅱ)若数列{an}是公比为q且q≥3的等比数列,则Sn<1.
证明:(Ⅰ)由题意可知an>0
bn-2(
1
an
-
1
an+1
)

=
an+1-an
an+1
an+1
-2(
1
an
-
1
an+1
)

=
an+1-an
an+1
an+1
-2
an+1
-
an
an+1
an

=
(
an+1
-
an
)(
an+1
an
+an-2an+1)
an+1
an+1
an

又an<an+1,∴
an+1
-
an
>0
an+1
an
an+1

an+1
an
+an-2an+1<0

(
an+1
-
an
)(
an+1
an
+an-2an+1)
an+1
an+1
an
<0

bn<2(
1
an
-
1
an+1
)

(Ⅱ)数列{an}是首项a1=1,公比为q且q≥3的等比数列,
an=a1qn-1=qn-1
bn=
an+1-an
an+1
an+1
=
qn-qn-1
q
3n
2
=q-
n
2
(1-q-1)

Sn=b1+b2+…+bn
=(1-q-1)(q-
1
2
+q-
2
2
+q-
3
2
+…+q-
n
2
)

=(1-q-1)•
q-
1
2
(1-q-
n
2
)
1-q-
1
2

=(
1
q
+
1
q
)(1-
1
qn
)

∵q≥3,∴0<
1
q
+
1
q
1
3
+
1
3
=
3
+1
3
<1

0<1-
1
qn
<1

Sn=(
1
q
+
1
q
)(1-
1
qn
)<1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网