题目内容
已知向量a,b满足|a|=2,|b|=1,(a-b)·b=0,那么向量a,b的夹角为( )A.30° B.45° C.60° D.90°
解析:∵(a-b)·b=0,∴a·b-b2=0,
又|a|=2,|b|=1.
∴|a|·|b|·cos〈a,b〉-1=0,∴cos〈a,b〉=
,
∴〈a,b〉=60°.
答案:C
练习册系列答案
相关题目
已知向量a,b满足|a|=2,|b|=3,|2a+b|=
,则a与b的夹角为( )
| 37 |
| A、30° | B、45° |
| C、60° | D、90° |