题目内容
如图,在正方体ABCD—A1B1C1D1中,求异面直线A1B与AC所成的角.![]()
解:不妨设正方体的棱长为1,设
=a,
=b,
=c,则|a|=|b|=|c|=1,a·b=b·c=c·a=0,?
=a-c,
=a+b.?
∴
·
=(a-c)·(a+b)=|a|2+a·b-a·c-b·c=1,而|
|=|
|=
.?
∴cos〈
,
〉=
=
,?
∴〈
,
〉=60°.?
因此,异面直线A1B与AC所成的角为60°.
练习册系列答案
相关题目