题目内容

在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1,C1,B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,这个几何体的体积为
403

(1)求棱A1A的长;
(2)求经过A1,C1,B,D四点的球的表面积.
分析:(1)设A1A=h,已知几何体ABCD-A1C1D1的体积为
40
3
,利用等体积法VABCD-A1C1D1=VABCD-A1B1C1D1-VB-A1B1C1,进行求解.
(2)连接D1B,设D1B的中点为O,连OA1,OC1,OD,利用公式S=4π×(OD12,进行求解.
解答:解:(1)设A1A=h,∵几何体ABCD-A1C1D1的体积为
40
3

∴VABCD-A1C1D1=VABCD-A1B1C1D1-VB-A1B1C1=
40
3

即SABCD×h-
1
3
×S△A1B1C1×h=
40
3

即2×2×h-
1
3
×
1
2
×2×2×h=
40
3
,解得h=4.
∴A1A的长为4.
(2)如图,连接D1B,设D1B的中点为O,连OA1,OC1,OD.
∵ABCD-A1B1C1D1是长方体,∴A1D1⊥平面A1AB.
∵A1B?平面A1AB,∴A1D1⊥A1B.
∴OA1=
1
2
D1B.同理OD=OC1=
1
2
D1B.
∴OA1=OD=OC1=OB.
∴经过A1,C1,B,D四点的球的球心为点O.
∵D1B2=A1D12+A1A2+AB2=22+42+22=24.
∴S=4π×(OD12=4π×(
D1B
2
2=π×D1B2=24π.
故经过A1,C1,B,D四点的球的表面积为24π.
点评:本题主要考查空间线面的位置关系,考查空间想象能力、逻辑思维能力、运算求解能力和探究能力,同时考查学生灵活利用图形,借助向量工具解决问题的能力,考查数形结合思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网