题目内容
【题目】已知函数f(x)=
(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是( )
A.(0,
]
B.[
,
]
C.[
,
]∪{
}
D.[
,
)∪{
}
【答案】C
【解析】解:y=loga(x+1)+1在[0,+∞)递减,则0<a<1,
函数f(x)在R上单调递减,则:
;
解得,
;
由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,
故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,
当3a>2即a>
时,联立|x2+(4a﹣3)x+3a|=2﹣x,
则△=(4a﹣2)2﹣4(3a﹣2)=0,
解得a=
或1(舍去),
当1≤3a≤2时,由图象可知,符合条件,
综上:a的取值范围为[
,
]∪{
},
所以答案是:C.
![]()
练习册系列答案
相关题目