题目内容
已知点集
,其中
,
,点列
在L中,
为L与y轴的交点,等差数列
的公差为1,
。
(1)求数列
的通项公式;
(2)若
=
,令
;试用解析式写出
关于
的函数。
(3)若
=
,给定常数m(
),是否存在
,使得
,若存在,求出
的值;若不存在,请说明理由。
(1)
(2)
(
)
(3)存在
解析:
(1)y=
·
=(2x-b)+(b+1)=2x+1 -----(1分)
与
轴的交点
为
,所以
; -----(1分)
所以
,即
, -----(1分)
因为
在
上,所以
,即
-----(1分)
(2)设
(
),
即
(
) ----(1分)
(A)当
时,![]()
----(1分)
=
=
,而
,所以
----(1分)
(B)当
时,
----(1分)
=
=
, ----(1分)
而
,所以
----(1分)
因此
(
) ----(1分)
(3)假设
,使得
,
(A)
为奇数
(一)
为奇数,则
为偶数。则
,
。则
,解得:
与
矛盾。 ----(1分)
(二)
为偶数,则
为奇数。则
,
。则
,解得:
(
是正偶数)。 ----(1分)
(B)
为偶数
(一)
为奇数,则
为奇数。则
,
。则
,解得:
(
是正奇数)。 ----(1分)
(二)
为偶数,则
为偶数。则
,
。则
,解得:
与
矛盾。 ----(1分)
由此得:对于给定常数m(
),这样的
总存在;当
是奇数时,
;当
是偶数时,
。 ----(1分)