题目内容

设函数f(x)=数学公式,其中a为实数.
(Ⅰ)若f(x)的定义域为R,求a的取值范围;
(Ⅱ)当f(x)的定义域为R时,求f(x)的单减区间.

解:(Ⅰ)f(x)的定义域为R,
∴x2+ax+a≠0恒成立,∴△=a2-4a<0,∴0<a<4,
即当0<a<4时f(x)的定义域为R.

(Ⅱ)由题意可知:,令f'(x)≤0,得x(x+a-2)≤0.
由f'(x)=0,得x=0或x=2-a,
又∵0<a<4,∴0<a<2时,由f'(x)<0得0<x<2-a;
当a=2时,f'(x)≥0;当2<a<4时,由f'(x)<0得2-a<x<0,
即当0<a<2时,f(x)的单调减区间为(0,2-a);
当2<a<4时,f(x)的单调减区间为(2-a,0).
分析:(Ⅰ)f(x)的定义域为R,说明分母不为零,利用判别式直接求a的取值范围;
(Ⅱ)f(x)的定义域为R时,求导数,导数为0确定x的值,根据a的范围,确定导数的符合,求f(x)的单减区间.
点评:本题考查函数的定义域及其求法,利用导数研究函数的单调性,考查转化思想,分类讨论思想,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网