题目内容
((本小题满分14分)
在数列
,
中,a1=2,b1=4,且
成等差数列,
成等比数列(
)
(Ⅰ)求a2,a3,a4及b
2,b3,b4,由此猜测
,
的通项公式,并证明你的结论;
(Ⅱ)证明:
.
在数列
(Ⅰ)求a2,a3,a4及b
(Ⅱ)证明:
由条件得
由此
可得
.································ 2分
猜测
.································································ 4分
用数学归纳法证明:
①当n=1时,由上可得结论成立.
②假设当n=k时,结论成立,即
,
那么当n=k+1时,
.
所以当n=k+1时,结论也成立.
由①②,可知
对一切正整数都成立.······························· 7分
(Ⅱ)
.
n≥2时,由(Ⅰ)知
.·································· 9分
故


综上,原不等式成立. ············································································ 14分
由此
猜测
用数学归纳法证明:
①当n=1时,由上可得结论成立.
②假设当n=k时,结论成立,即
那么当n=k+1时,
所以当n=k+1时,结论也成立.
由①②,可知
(Ⅱ)
n≥2时,由(Ⅰ)知
故
综上,原不等式成立. ············································································ 14分
略
练习册系列答案
相关题目