题目内容
在锐角△ABC中,已知cosA=
,BC=
,记△ABC的周长为f(B).
(1)求函数y=f(B)的解析式和定义域,并化简其解析式;
(2)若f(B)=
+
,求f(B-
)的值.
| 1 |
| 2 |
| 3 |
(1)求函数y=f(B)的解析式和定义域,并化简其解析式;
(2)若f(B)=
| 3 |
| 6 |
| π |
| 2 |
分析:(1)由题意可求得A角,利用正弦定理及内角和等于π可把边AC、AB用B角表示出来,从而求得解析式;根据各角为锐角及内角和定理可求定义域.
(2)根据(1)所求解析式及f(B)=
+
可求得B角,进而可求出f(B-
)的值.
(2)根据(1)所求解析式及f(B)=
| 3 |
| 6 |
| π |
| 2 |
解答:解:(1)由题意得A=
,由正弦定理,得
=
=
,即
=
=
,
所以AB=
•sinC=2sinC,AC=2sinB,又B+C=
,
所以y=f(B)=AB+BC+AC=2sinC+2sinB+
=2sin(
-B)+2sinB+
=2sin
cosB-2cos
sinB+2sinB+
=3sinB+
cosB+
=2
sin(B+
)+
.
由
,得
<B<
.
所以函数y=f(B)=2
sin(B+
)+
,定义域为(
,
).
(2)f(B)=
+
,即2
sin(B+
)+
=
+
,
∴sin(B+
)=
,又
<B<
,∴B=
,
∴f(B-
)=2
sin(
-
)=2
sin(-
)
=-2
sin(
+
)=-2
(sin
cos
+cos
sin
)
=-2
×
=-
.
∴f(B-
)=-
.
| π |
| 3 |
| BC |
| sinA |
| AB |
| sinC |
| AC |
| sinB |
| ||
sin
|
| AB |
| sinC |
| AC |
| sinB |
所以AB=
| ||
sin
|
| 2π |
| 3 |
所以y=f(B)=AB+BC+AC=2sinC+2sinB+
| 3 |
| 2π |
| 3 |
| 3 |
=2sin
| 2π |
| 3 |
| 2π |
| 3 |
| 3 |
=3sinB+
| 3 |
| 3 |
| 3 |
| π |
| 6 |
| 3 |
由
|
| π |
| 6 |
| π |
| 2 |
所以函数y=f(B)=2
| 3 |
| π |
| 6 |
| 3 |
| π |
| 6 |
| π |
| 2 |
(2)f(B)=
| 3 |
| 6 |
| 3 |
| π |
| 6 |
| 3 |
| 3 |
| 6 |
∴sin(B+
| π |
| 6 |
| ||
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 12 |
∴f(B-
| π |
| 2 |
| 3 |
| π |
| 12 |
| π |
| 2 |
| 3 |
| 5π |
| 12 |
=-2
| 3 |
| π |
| 6 |
| π |
| 4 |
| 3 |
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| π |
| 4 |
=-2
| 3 |
| ||||
| 4 |
3
| ||||
| 2 |
∴f(B-
| π |
| 2 |
3
| ||||
| 2 |
点评:本题考查了函数解析式的求法及三角恒等变换,函数定义域的求解要考虑实际意义.
练习册系列答案
相关题目