题目内容
已知函数,其中.
(Ⅰ)当时,判断在区间上的单调性;
(Ⅱ)当时,若不等式对于恒成立,求实数的取值范围.
(本小题满分12分)在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:相切.
(Ⅰ)求圆O的方程;
(Ⅱ)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.
设变量满足约束条件,则目标函数的最小值为 ( )
A.6 B.7 C.8 D.23
设函数,记
,则下列结论正确的是 ( )
A. B.
C. D.
已知函数.
(Ⅰ)求函数在区间上的最大值及相应的的值;
(Ⅱ)若且,求的值.
已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料.
若下面4个说法都是正确的:
①甲不在查资料,也不在写教案;
②乙不在打印材料,也不在查资料;
③丙不在批改作业,也不在打印材料;
④丁不在写教案,也不在查资料.
此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断
A.甲在打印材料 B.乙在批改作业 C.丙在写教案 D.丁在打印材料
不等式的解集是____________.
(本小题满分12分)
已知,分别是与x轴,y轴方向相同的两个单位向量,,, ,,
(Ⅰ)求;
(Ⅱ)求,的坐标.